Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 20(5): 169-176, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172300

RESUMO

This study evaluated the antagonistic effect of the Lacticaseibacillus paracasei JLM strain isolated from aguamiel, against Brucella abortus RB51, S19, and 2308 strains, during the manufacture of soft-ripened cheese. First, the tolerance of Lc. paracasei JLM was tested with pH values and bile salt concentrations for 3 h to simulate digestive tract conditions. The antagonistic effect against B. abortus strains was evaluated through double-layer diffusion and agar well diffusion assays. In addition, the stability of the cell-free supernatant (CFS) was tested with the agar well diffusion method under different conditions of temperature, pH, and treatment with digestive enzymes. Finally, the antagonistic effect against B. abortus strains was observed during the manufacture of ripened cheese for 31 days at 4°C and 25°C using the Lc. paracasei JLM strain as starter culture. The results showed that the Lc. paracasei JLM strain remains viable after exposure to different pH values (from 3.00 to 7.00) and concentrations of bile salts (from 0.5% to 7%). Moreover, the results demonstrate that the growth of the three B. abortus strains was inhibited in both antagonism tests and that CFS maintained 86% activity after heat treatment at 100°C, 121°C, or enzymatic digestion (proteinase K, trypsin, chymotrypsin), but it was inactivated at pH levels above 6. Finally, Lc. paracasei JLM completely inhibited the growth of B. abortus in ripened cheese at 25°C from day 17 and showed greater inhibition on the B. abortus RB51 strain in the ripened cheese at 4°C, showing statistical differences for the B. abortus S19 and B. abortus 2308 strains. The current research concluded that the Lc. paracasei JLM strain has an antagonistic effect on B. abortus, enhancing the potential of its use in the future as a probiotic.


Assuntos
Queijo , Lacticaseibacillus paracasei , Brucella abortus , Lacticaseibacillus , Ágar
2.
Foodborne Pathog Dis ; 19(8): 535-542, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675662

RESUMO

Brucellosis is a zoonotic infection caused by the consumption of contaminated raw milk and dairy products. This study aims to compare survival rates of Brucella abortus RB51 and S19 vaccine strains to that of virulent B. abortus 2308 strain during the manufacture of fresh and ripened cheeses. To do this, we inoculated fresh pasteurized milk with B. abortus RB51, S19, or 2308 at a 6 × 108 colony-forming unit per milliliter concentration during the cheese making process. Cheese was manufactured at room temperature, then, fresh cheeses were conserved at either 4°C or 25°C for 7 days, while ripened cheeses were conserved for 31 days at the same temperatures. We measured B. abortus survival and pH values during different stages of the process. Our results confirm that all three strains can maintain viable cells in both types of cheeses throughout the process. Survival of B. abortus RB51 was 10 times lower than was the survival of the B. abortus S19 and B. abortus 2308 strains in both fresh and ripened cheeses. Our results also suggest that both temperature and pH can condition Brucella survival. In conclusion, B. abortus RB51 and S19 vaccine strains can survive throughout the manufacture and conservation processes of both fresh and ripened cheeses. In turn, this implies a potential health risk if cheeses contaminated with these strains were to be consumed.


Assuntos
Vacina contra Brucelose , Brucelose , Queijo , Brucella abortus , Brucelose/prevenção & controle , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...